New Hardware Realizations of Non-Recursive Digital Filters

S. Zohar

Communications Systems Research Section

Analysis of the bit-level operations involved in the convolution realizing a
non-recursive digital filter leads to hardware designs of digital filters based on
the operation of counting. Two distinct designs are outlined: The first one is
capable of very high speed, but is rather expensive. The second one is quite slow,
but has the advantages of low cost and high flexibility. The basic designs con-
sidered utilize fixed point representation for the data and filter coefficients.
Variants which allow floating point representation of the coefficients are also

described.

I. Introduction

Digital filters are fast becoming an important element
in all DSN data handling systems. They are particularly
advantageous in systems which are digital throughout.
In many applications they also offer significant reduc-
tions in data storage requirements.

Consider a filter which transforms its input time func-
tion £(t)* to the filtered time function #(t). A non-recursive
digital filter simulates such a filter by computing samples
of the filtered signal,

me = y(kTs) (1)

1AIl quantities dealt with in this paper are real.

JPL TECHNICAL REPORT 32-1526, VOL. IX

from samples of the input signal,
& = &(kT,), (2)

according to the formula

Nm = z_: Sm—kak (3)

k=0

in which the coeflicients «; are obtainable from the filter
transfer function.

There is a growing need for special-purpose machines
that would implement such a filter. Particularly attractive
here are machines that would produce filtered output

65

samples at the rate input samples are generated in the
data acquisition environment.

An obvious strategy in realizing such a machine is to
compute 7, via the following rephrasing of Eq. (3):

Pk = Em-le
T Ig Pmi } “

that is, the desired output, ., is evaluated through the
intermediate entities P, which require the use of a mul-
tiplier.

We propose here a different strategy in which the
intermediate entities are obtained by counting. Our main
purpose in this paper is to survey the various possible
designs implementing this strategy. Interesting and prom-
ising designs are indicated in the high-speed high-cost
category as well as the low-speed low-cost class. The
paper is organized along the following lines: A master
design is developed in Sections II and III. This design
serves as the starting point for developing two different
basic designs in Sections IV and V. Section IV presents
a high-speed design involving high cost. Section V is
devoted to an inexpensive low-speed design. Several
variants of these two designs are also considered.

Il. The Master Design

Let us assume (temporarily) that the data and coeffi-
cients satisfy

éka e Z 0 (5)

This assumption simplifies the presentation of the main
features of the master design and will be removed in
Section II1.

In representing &, o in the machine, we assign J, bits
to each input data word and], bits to each coefficient.
Denoting by primes the truncated versions of &, oz con-
sistent with the finite J,, J., we represent the data and
coeficients by the integers %%, g defined as follows:

4 = 2,
(®)

of = 24ay

Suitable values of A, X can be determined from the
known ranges of « &.

66

The immediate effect of the above representation is
that the machine will substitute the approximation s,
for the true %, where

K-1
T = 3 &l (7
k=0

ym may be regarded as a sample of the approximated
output »'(t).

Note that the adopted representation is equivalent to
a fixed-point binary representation. Adaptations employ-
ing floating point representation for the coefficients are
possible with a reasonable amount of extra hardware.
Such adaptations are described in Sections IV and V.

Substituting Eq. (6) in Eq. (7) we get

K-1
Ym =Y Xmkllk (8)
k=0
where
ym — 2(A+X)_'7;n (9)

is an integer.

Let us examine now the implication of Eq. (8) in terms
of bit-level operations. We start by writing down ex-
plicitly the binary representations of az, xy

Ja—1
= E uf; 27 ui; = 0,1

j=0

o (10)
X = E ‘D}’c]‘2] D)’cj = 0,1

j=0

Using the representation (10) in Eq. (8), we get an
explicit expression for y., as a triple sum
K-1 J-1 Jg-1
Y = Z Z E Uk Oy, r-i 27 (11

k=0 r=0 i=0
where

]:]a+].t—1 (12)
Application of the “multiply-then-add” strategy of Eq. (4)
is equivalent to summing over i,r first (thus getting the

Pmxs) and only then performing the k summation, In the
scheme proposed here, we change the order of summa-

JPL TECHNICAL REPORT 32-1526, VOL. IX

tion, making the r summation the last one. Thus, de-
noting

K-1J4-1
Z Z ul’ciU;n-k,M =h; (13)
k=0 i=0
we have
J-1
Yo = S .2 (14)
=0

Strictly speaking, the entity defined in Eq. (13) should
be denoted h},,. However, since in most of the following
discussion m is constrained to a specific constant value,
the simpler notation, A}, will do.

Equations (13) and (14) embody the basic strategy of
the proposed machine. Let us examine Eq. (13) first.
Each element of the double sum is a product of two
1-bit entities. Such a product is either 0 or 1 and, prac-
tically speaking, no multiplication is involved in its eval-
uation. A dual input AND gate is all that is needed.
Equation (13) is a summation of KJ, such terms. Thus, if
we design a system in which KJ, dual input gates are
fed by the pairs of bits specified in Eq. (13), a count of
the number of TRUE gates, will equal h..

Equation (14) is implemented by regarding its right-
hand side as a polynomial with coefficients k, evaluated
for the argument 2. Applying the well-known polynomial
algorithm we get

ym:(<h5_1-2+h/_2)2++h§)2_}_h{) (15)

The realization of Eq. (15) can now be carried out in a
sequence of shift and add operations in a standard ac-
cumulator.

The above discussion leads to the general outline of
the machine shown in Fig. 1. We see here four basic
elements:

(1) A fixed register (A) holding the coefficients a;
prescribing the filter transfer function. Its contents
would normally stay fixed throughout a specific
filter simulation. They may, however, be varied
in the course of the filtering process to realize an
adaptive filter.

(2) A shift register (X) holding the input words x;.
These are fed on the right, a bit at a time. Reg-
isters A,X are cross-linked by AND gates.

JPL TECHNICAL REPORT 32-1526, VOL. iIX

(3) A counter that counts the number of TRUE gates
after every shift of register X. Each such count
will be shown to equal a specific h..

(4) An accumulator that combines] counter outputs
through a shift and add sequence to generate the
output word y,,

A. A Detailed Example

We turn our attention now to the data configuration
in registers A and X. This is most easily illustrated in
terms of a specific example. We adopt the following pa-
rameters for our example:

K=3 J,=5],=3 (16)

These values (particularly K) are too low to be realistic.
Their adoption, however, facilitates the presentation of
detailed bit configurations and thus makes it easier to
grasp the details of the proposed machine. This example
is adopted in most of the figures in this paper.

The situation at some intermediate point in the com-
putation of y,, is shown in Fig. 2b where the following
convention is followed: A numeral in a register cell
represents the radix power assigned to a 1 bit in that
location. This power is referred to as the weight of the
bit. We shall find it convenient to designate the bit itself
by its weight. Thus, we may say that the first cell on the
right of register A contains bit 4 of a,. Some of the bits
are zero independently of the data. These are indicated
by the letter z.

We note first that successive x;’s are separated by
Jo—1 (=4) zero bits. Thus, it takes J(=7) bit times
(shifts) to feed one input word.

Similarly, the A register indicates a separation of
J: —1(=2) zero bits between successive words. Here,
however, there is no need to have a hardware imple-
mentation of these zero bits so that the A register could
be split into K independent registers.?

Next, we observe that the x;’s have their most signifi-
cant bit on the left, while the a;s have their most sig-
nificant bit on the right. The spacing and the reversed

20ne would still implement the A register as a single continuous
register when it turns out to be convenient to perform the initial
loading of A serially. In this case, A would be a shift register.
Another argument for a single A register is the flexibility it al-
lows in modifying word size. (Note that for 1-bit x;.’s, there is
no spacing in the A register).

67

bit arrangement guarantee that all pairs of bits feeding
a common gate satisty the index relation required by
Eq. (13). The double summation appearing there trans-
lates simply into a count of all TRUE gates in Fig. 2b.
In the specific situation shown here, the count would
yield hj. Similarly, shifting the X register one bit to the
left will now yield A7, and so on.

Having seen how an £ is generated in the counter out-
put, we can consider now the overall scheme culminating
in the output y,,.

The processin\g starts with the initial situation shown
in Fig. 2a where a count yields A} of y,, (k) in the gen-
eral case). We load this count into the accumulator and
procecd to compute hi. This is done by shifting the X
register one bit to the left and counting the TRUE gates.
We return now to the accumulator, shift its contents
left one bit (equivalent to multiplying by 2) and add A’
The succession of these shift and add operations is the
step by step implementation of Eq. (15). We proceed
with this sequence up to the last cycle depicted in Fig. 2c.
A count here yields hf. We return now for the last time
to the accumulator, shift its contents one bit to the left
and add A{. It now contains the final result, Y

Examination of Fig. 2c shows that when the above
process is continued, the next 1-bit left shift will bring
into the X register the most significant bit of xu... The
resulting configuration is almost identical with the one
initiating the computation of y,, (Fig. 2a). The only dif-
ference is the replacement of m by m + 1. Hence, the
sequence of operations described here automatically
leads to the computation of 1., following the computa-
tion of y,, and so on.

The basic design outlined here is valid only when
both data and coefficients are non-negative. In the next
section we proceed to remove this constraint.

lll. Modified Design to Allow Negative Numbers

General-purpose computers usually handle negative
numbers either by the “sign-magnitude” representation
or via the use of “2s-complement.” Both methods are
quite inappropriate in the present application, as they
would drastically increase the complexity of the machine.

A possible solution® is to apply bias to both data and
coefficients so that the numbers presented to the ma-

3Suggested by R. F. Emerson of the Communications Systems Re-
search Section.

68

chine are always positive. This requires corrective mea-
sures to compensate for the bias. The logic implementa-
tion of these measures has been worked out* but will
not be presented here. Instead, a simpler more attractive
solution based on a negative radix number representa-
tion (Refs. 1, 2) will be described in detail. Specifically,
we consider representing data and coefficients in base
(—2). As a simple illustration, consider the number 3:

3=1-2t141+20=11,
=1-(=2P+1(=20+1-(—2) =111,
Similarly,

—3=1+(=20+1+(—2)+ 0+ (—2)
+ 1+(—2)° = 1101,

We see that both positive and negative numbers are
accommodated with one and the same representation.

Let us examine now the effect of such a representa-
tion on the design of our machine. We start with Eq. (10)
which will now be replaced by Eq. (17)5.

Ja-1

ay — Z uk]-(~2)j (U]c]' = 0,1) ?

(17)
(o = 0,1) S

This in turn leads to the modification of Eqs. (13), (14),
and (15) as follows:

-1
Xy — Z Dk]'(_2)j
0

K-1J,-1

Z Z ukivm—k,r~i = hr (18>

k=0 i=0

J-1

Ym = 3 ho(—2) (19)

Ym = (- (yey* (—2) + hyu)(—2) + -+ + h)(—2) + h,
(20)

We conclude that if we remove the constraint (5) and
adopt a negative binary representation for &,ay, the ma-
chine design of Section II is still applicable, provided
we modify the sequence of operations in the accumu-
lator, combining the counts so as to realize Eq. (20)
rather than Eq. (15).

4Author’s unpublished manuscript.
Suy; is the jth bit of g in radix (—2). This is different from Uy ;
which is the jth bit of g in radix (+2).

JPL TECHNICAL REPORT 32-1526, VOL. IX

The count h, is a function of the bits in the negative
binary representation of the data and coefficients; h,
itself, however, may be represented in any system. For
obvious reasons we adopt a standard (base 2) counter to
determine h,. Therefore, Eq. (20) should be implemented
in a standard (base 2) accumulator thus yielding the re-
sult y,, in binary.

The modification to realize Eq. (20) is particularly
simple if the accumulator is of the magnitude-sign-bit
type. In this case, each shift operation will simply be
accompanied by a simultaneous sign reversal. This is all
it takes to ensure that the negative radix inputs, x;, are
processed to yield positive radix outputs, y,.

We consider now the implications of the adopted neg-
ative radix representation. The a;’s are usually computed
on a gencral-purpose binary computer. Their negative
binary representation can be easily obtained by incorpo-
rating in the coeflicient program a subroutine converting
from positive binary to negative binary representation.
A suitable algorithm for this subroutine is described in
Ref. 3.

The situation with respect to the data is somewhat
different. The basic configuration of Fig. 1 shows the
data already in digital form. In most practical situations,
the data are available in analog form so that the very
first clement in the input of a practical machine would
have to be an A/D converter. The above discussion then
indicates that we ought to interpose a radix converter
(Ref. 3) between the A/D converter and the X register.
This is a reasonable approach when a standard commer-
cially available A/D converter is to be used.

A more logical approach, however, would combine the
negative radix converter with the A/D converter in a
single functional unit that would directly convert the
analog input to its negative binary representation. The
design of such a converter operating in serial fashion is
discussed in detail in Ref. 4. Such a device is particu-
larly attractive in that one does not have to wait for
the complete conversion of an analog sample. Thus, the
first bits of a data word may be in register X and partly
processed before its last bits have even been determined.

An overall outline incorporating the modifications in-
troduced in this section is shown in Fig. 3. We have
added here a D/A converter as the last link in the pro-
cessing. The transformation (9) is effected here. Note in
this context that the digital word to be converted is
available in the accumulator with more bits than the

JPL TECHNICAL REPORT 32-1526, VOL. IX

input x,’s. Usually, a few of the lower bits will simply be
discarded at this point.

Figure 3 serves as the starting point for the more spe-
cific designs considered in the following two sections.
In preparation for this, we introduce here some necessary
terminology.

Let f, be the rate at which input bits are fed to the
machine (bit rate). The corresponding period (bit time)
T, is then

Ty =+ (21

From the previous discussion it is obvious that Tj is also
the period of the clock pulses controlling the X register
shifts. Thus, the entities &, are produced at the rate f,
and the accumulator shown in Fig. 3 is required to com-
plete a shift-and-add cycle in the interval T}.

The sampling rate, f,, of the analog input signal ¢, is
related to f, by

or equivalently,

Ts = =]Tb = (]z + Ia — l)Tb (23)

1
fs
Of this, J,T, is the time required to feed one data word
into the X register, while (J, — 1)T, is the time required
to feed the associated (J, — 1) zeros.

Another important parameter is the delay time T,
Thus, while 47, is the approximation to the output of a
zero delay filter at time mT,, a practical filter will pro-
duce this output at time (mT, 4 T,) where T,; > 0.

IV. The Partitioned-Counting Filter

We consider here an elaboration of the master design
that achieves high-speed by performing the counting
indicated in Fig. 3 in a special way.

Let N(=KJ,) be the number of gate outputs to be
counted and let N satisfy

21 < N < ¥ (24)

69

The total count, h, is therefore bounded by
0< h< 2t (25)
and is representable by an M-bit binary number.

If we use a standard M-bit binary counter with clock
time T, the counting time will be NT.. Hence

T, = (N + DT, (26)

and the result is a low-speed machine. Such a design has
its merits and is pursued further in Section VI.

Our concern here is with a high-speed design. Realiz-
ing that the low speed associated with the above ap-
proach is a direct result of the serial nature of the
counting, we propose to subdivide the N gates into
groups of g gates each and count all these groups in
parallel. We refer to this method as partitioned counting.
In the following, we examine this approach in detail.

First, we note that in the interest of efficiency, q should
satisfy

g=2-1 (=23") (27)

so that the count of each group is representable as an

r-bit binary number. The method considered here would

replace the single M-bit counter with a large number of
smaller elementary r-bit counters.

Using the bit terminology of Section II, we may say
that the initial N gates are a representation of the num-
ber h as a sum of N zero-weight bits. Similarly, the
binary number representing the final count is a repre-
sentation of h as a sum of M(K N) bits whose weights
range from zero to M — 1. In partitioned counting, the
transition from one representation to the other is effected
in a large number of small steps. In each such step, the
weights are increased while the total number of bits is
decreased.

The large number of elementary counters required,
means that the investment in hardware is quite high.
However, the resulting speed increase is significant.
Thus, assuming the same clock time T, as before, count-
ing of g gates is accomplished in time qT.. This, how-
ever, does not yield the final count yet. The outputs of
these counters will now have to be operated on in a
similar fashion (described later in detail). Hence they

70

should remain undisturbed for another qT. interval.
This means that

T, = 29T, (28)

It follows that the speed increase over the single counter
method is given by the factor (N + 1)/2q. For large N
and small q(qui, = 3), this factor may be quite large.

To obtain the speed improvement while minimizing
the amount of hardware, we try to make sure that all
r-bit counters are fed ¢ =27 — 1 inputs. This is most
easily facilitated when

N=g¢qv (v integer) (29)
If N does not satisfy Eq. (29), lower efficiency will usu-
ally result, though there are various ways to minimize
this effect. To simplify the presentation here, we assume
from now on that Eq. (29) is satisfied.

We turn now to the details of the scheme. Consider
an r-bit counter, counting g bits of weight k. The result
is a sum of r bits ranging in weight from k to k + r — 1.
The number of bits has thus been reduced, having been
multiplied by

1‘___ r
q 2'—1

g = <1 (r>2) (30)

Applying g** such counters to the N(=¢q") zero-weight
bits yields a sum of BN = g**r bits with weights rang-
ing from O to r — 1. Now we consider all bits of the same
weight as inputs for further counting. g*-?r counters will
be required at this level and the result will be a sum of
q"*r* bits with weights ranging from 0 to 2(r — 1).

The pattern emerging from the above description is
best illustrated in terms of an array such as that of Fig. 4
which applies for r = 3. This is essentially an ordered
listing of the number of bits as a function of weight (k)
and counting level (n). The numbers for each level have
a common multiplier indicated on the left. Thus, the
initial situation referred to as level 0 has ¢*+1 bits of
weight zero. In level 1 (following first count), we have
q"* bits of each of the weights 0,1,2 and so on. Factor-
ing out the common level multiplier is particularly con-
venient since the resulting numbers in the array are quite
easy to compute in this case.

Let us assign the symbol B, to the array element
corresponding to level n, weight k in a partitioned count-

JPL TECHNICAL REPORT 32-1526, VOL. IX

ing scheme using r-bit counters. (Example: B, ,, = 2).
The earlier description of the bit transformation effected
by a single r-bit counter, implies that the elements of
level n are derived from those of level n — 1 as follows:
Element B,_, . contributes a term B, ,, to each of the
following: Buir, Bugs1,r' " *> Bukeroa,rm Equivalently,

-1
Bnkr = Z Bn—l,k—i,r (31)
i=0

The other obvious properties are
Boxr = 80 (8:; is Kronecker's §) (32)

Bu,=0 fork<0 (33)

The last equation is a direct result of the fact that we
are dealing here with integers so that no bits are assigned
negative weights. Equations (31) to (33) form a prescrip-
tion for the computation of any B,;,.

We note in passing that the array of Fig. 4 is actually
a generalized Pascal triangle. The special case r=2
yields the standard Pascal triangle. Similarly, B, is a
generalized binomial coefficient. Indeed, the above eqns.

imply that
n

The B, parameters prescribed by Egs. (31) to (33)
are involved only in the initial levels of counting. The
terminating levels display a different pattern. We illus-
trate this with a particular example involving N = 2401
=T* (that is, r = 3, v = 4). The corresponding array is
shown in Fig. 5. Obviously, the initial levels of Fig. 5
are identical with those of Fig. 4. Up to level 4, the
elements are generated in a unique fashion following
Eqgs. (31) to (33). At this level, the multiplier is 1 so that
the elements in row 4 (n = 4) directly specify the number
of bits for each weight. Note that while the single zero-
weight bit has reached its final value, there are still
19 bits of weight 4. Further counting is therefore re-
quired, but the organization will now be different.
Obviously, nothing more is to be done with the zero-
weight single bit. The 4 bits of weight 1 will require
one counter thus entailing a somewhat reduced efficiency.
On the other hand, one may postpone action relating to
the 4 bits of weight 7, arguing that counting of lower
weight bits will increase the number of weight 7 bits
at the upper levels. Thus, by postponing their count,
we increase the overall efficiency. The same argument

JPL TECHNICAL REPORT 32-1526, VOL. IX

applies to the 10 bits of weight 2. Instead of assigning
2 counters to them, we count only 7 of them in one
counter, postponing the counting of the remaining 3.
Following these reasonable (but not unique) guidelines,
we arrive at the numbers shown in levels 5-14.

The numbers on the right margin of the array in
Fig. 5 represent the number of elementary counters used
between the levels bracketing their position. Thus, 3
elementary counters are required to transform the bits
of level 3 to the configuration of level 4. The total
number of counters is 602 as indicated. The major part
of this is contributed by the counters operating below
level v. It can be shown that the sum of these is in
general (q¥ — 1*)/(q — r). For Fig. 5, this value is 580.
In comparison, we see from the indicated total that only
22 counters are involved in the terminating levels.

Since the last level has n = 14 and transferring from
one level to the next takes the time qT,, the final count
of the N gates will be ready for the accumulator after
a delay 14T, = 98T,. Successive counts, however, are
separated by the shorter interval T,. From Eq. (28) we
get Ty = 2qT, = 14T..

An even faster design is illustrated in Fig. 6 which
applies 2-bit elementary counters to the slightly smaller
N = 2187 =3 (that is, r = 2, v = 7). Each counter uses
fewer components but more counters are needed. The
counting delay is given by 20gT. = 60T., while T, =
6T.. These figures should be compared to 2187T,
(= NT.) and 2188T, (=(N + 1)T.) which are the corre-
sponding values for the single, 12-bit counter. The reduc-
tion from 21877 to 60T, is due to the parallel counting
of bits comprising a specific count. The further reduction
of the spacing to 6T, depends on the fact that at each
particular instant during the 60T, required to produce
a single count, only a small portion of the elementary
counters is needed for that specific count. This permits
the initiation of a new count long before the earlier count
has been completed. In Fig. 6, 10 distinct h,’s are being
simultaneously counted in a staggered arrangement. This
is further illustrated in Fig. 7. Note that during the inter-
val qT, starting at t,, the counting of h; is initiated, that
is, its bit configuration is transformed from level 0 to
level 1. At the same time, the counting of the earlier
input, h,, (the evaluation sequence prescribed in
Section II is h,, h,,, h,.,, -++) is further processed
by transforming from level 2 to level 3, the still earlier
input h; is transformed from level 4 to level 5 and so on.

The processing of h, is continued in the next interval
(t2ts). Note that the new input, h,, is not entered yet in

71

order to not disturb the bits in level 1 which are being
counted during this interval. The input spacing of 2qT.
and its implications are evident in Fig. 7.

The simultaneous counting of several h,’s means that
storage has to be provided for those bits of h, which
attain their final value before termination of the count.
Consider Fig. 6: The final value of bit 0 of h, is estab-
lished at level 7. No further counting involving this bit
is required. At this point it resides in a flip-flop of one
of the elementary counters. This counter will preserve
its information during the next gT. interval but follow-
ing that, it will bt zeroed and start counting a term of
h,_,. Evidently, the quiescent interval has to be used to
transfer the h, bit elsewhere. The simplest solution is
to transfer the zero bit to a shift register and step this
register at intervals 2g7T.. With the proper number of
cells (7 in this case), this register will output the zero
bit of h, at the time all its other bits are rcady. Needless
to say, this shift register will serve in the same capacity
for the zero bits of h,.,, h,_, and so on. Inspecting Fig. 6
and repeating the above arguments we find that accom-
modation of the finalized bit 1 requires a 6-bit shift
register, bit 2 needs a 5-bit shift register and so on, down
to bit 9 calling for a single flip-flop (1-bit shift register).®

A. Possible Variations

We turn our attention now to threc important vari-
ations.

The first variant counts ¢ gates in time T, (rather than
qT,.). The idea is to replace the elementary counters,
serially counting ¢ inputs, with elementary adders which
add the ¢ inputs on parallel.

For g =3, the well-known “full adder™ (Ref. 5) is
just such a device. It has three inputs (a carry and the
two bits to be added) and produces two output bits
(The sum bit and the new carry bit). These may be
regarded as the bits of the output count (the sum is bit
zero, the new carry is bit one).

Alternatively, one might consider the ¢ input bits as
specifying an address in a ROM organized as 2¢ words
of r bits each. “Counting” in this case is effected by
reading the r-bit word stored in the corresponding
address. This should obviously be restricted to low r.

“The handling of bits 3, 4, 6, 8 is slightly different, calling for a
1-bit buffer interposed between the finalized counter bit and the
shift register.

"Plus two latches to store the count.

72

Actually it can be shown that the combination r =2,
q = 3 requires the smallest overall number of memory
bits. However, for higher r (which might be dictated
by availability of off-the-shelf ROMs), Eq. (27) does not
prescribe the optimum gq.

A second variation is based on the use of buffers to
increase speed. If the output of cach elementary r-bit
counter is transferred to an r-bit buffer rather than
feeding directly the next level counters, the bit period
should consist of T, to count and T, to transfer the
counts (in parallel) to the buffers. Thus, Eq. (28) should
now be replaced by

T,=(g+ 1T, (34)

Speed is increased by the factor of 2g/(q + 1) at the
expense of essentially doubling the number of flip-flops.
Therefore, this method should always be compared to
the alternative of reducing g. Consider for example the
case of Fig. 5 (g =7). With 1806 (= 602-r) flip-flops
assigned to the elementary counters, we got T, = 14T..
Adding buffers, we have 3612 flip-flops yielding T, =8T..
This should be compared to Fig. 6 (¢ = 3) which assigns
4364 (= 2182 - r) flip-flops to get T;, = 6T for a slightly
lower N.

Note the disadvantage of a counting delay of 14+ (q +
1)T. = 112T. for the buffered, ¢ = 7, case as compared
to 60T, for the unbuffered, g = 3, case.

The third variant considered relates to the use of
floating point representation for the filter coefficients
. Let the ratio of the largest | o, | to the smallest | oy |
be p. If p is a large number, then even if we allot only a
very small number of bits to the smallest oy | we still
end up with a large J,. This hurts us in two ways:

(a) The sampling rate is reduced (see Eq. 23).

(b) N = KJ,, the number of gates to be counted is
increased, sharply increasing the cost.

We consider here a simple strategy which accepts (a)
but provides an answer for (b). To illustrate the strategy,
consider the following example: We wish to assign 5 bits
to each coeflicient but if the lowest | a; | satisfies that, we
find that we nced J, = 20 to represent the highest | a;|.
We organize registers A, X on the basis of J, = 20 but
attach gates and counters only to the 5 most significant
bits of each a;. This is equivalent to the adoption of a
floating point representation for the coefficients.

JPL TECHNICAL REPORT 32-1526, VOL. IX

It should be noted that we are considering here a
general-purpose machine that should be able to accom-
modate a wide range of requirements. In view of this,
the best way to implement the above strategy is to use
a single, sufficiently long, register for the coefficients but
effect the connection of its cells to the gates with relays
or switches under the control of the machine operator.
In addition to loading the coefficients a; into the
machine, the operator will also set the switches.

It has already been mentioned that the coefficients a;
will usually be computed on a general-purpose com-
puter. Assume then that they are punched on a paper
tape which is fed into the digital filter. In situations
where the additional expense is justified, this paper tape
could be made to command the switches and set them
directly without the intervention of the operator.

V. The Circulating-Lines Filter, A Low-Speed
Low-Cost Approach

In the introduction to Section IV we considered briefly
a design based on a serial counter. We concluded there
that such a machine would be very slow. In the present
section we proceed to show that this disadvantage is
coupled with the advantage of low cost, which makes
such a design quite attractive in some applications.

Consider Fig. 3 and assume that counting is to be
done serially. Obviously, there is no need in this case
to produce all the gates” outputs simultaneously as shown
there. Rather, one could take advantage of the serial
nature of the counting and produce the gate outputs
serially. This suggests using circulating delay lines or
MOS shift registers to replace the X and A registers of
Fig. 3.

We shall sec that the hardware simplification accruing
to serial counting extends also to the accumulator
appearing in Fig. 3. Thus, it will be shown that a some-
what more complex serial counter eliminates the need
for the accumulator altogether. We consider now the
various aspects of a serial counting design in some detail.

The basic design of Fig. 3 shows the data words being
fed into the X register with the most significant bits
leading. This means that the h,’s are computed in the
time sequence fiy 5, hy., -+ h,. In the present case, we
find it more convenient to feed the least significant bits

first, generating the L,’s in the time sequence Ny, hy, -,

SSuggested by 1. C.
scarch Section,

Wilck of the Communications Svstems Re-

JPL TECHNICAL REPORT 32-1526, VOL. IX

hy.;. Since serial A/D converters produce the most signi-
ficant bit first, this sequencing means that we have to
wait for complete conversion of a word prior to using
any of its bits. However, as the evolving design is
characterized by long delay, the additional delay due
to this effect is negligible.

The A/D converter could be either of the type produc-
ing the negative binary representation directly (Ref. 4)
or a commercial low-speed A/D converter followed by
a radix converter. Taking advantage of the adopted bit
sequence, a very simple radix converter is feasible (Ref. 3,
Sect. IV),

Use of circulating lines for the A, X registers allows
one gate to replace the KJ, gates shown in Fig. 3. It
takes one complete revolution of the coefficients line, A,
to sweep all coefficients past the single gate and gen-
erate h,. For the next computation (hr.), the relative
alignment of the X and A registers must be changed by
one bit position. Also, register X must discard one old
bit and admit one new bit. All these objectives are easily
attained by applying a widely used “trick,” namely, add-
ing an extra cell to the X register and using the flip-flop
implementing it, to inject new data bits.

The design is illustrated in Fig. 8a. The extra bit is
stored in cell B whose input is controlled by switch S.
The indicated state of S refers to its state during the
immediately following 1-bit shift. The example shown
is the simple one adopted in Eq. (16). Fig. 8a shows
the situation following the evaluation of the first term
of h, of y,, (see Egs. 18 and 19). As the two registers are
swept in step past the single gate, the remaining terms
of h, are evaluated. During all these operations, switch S
remains as shown in Fig. 8a so that any bit shifted out
of the gate feeding cell, lands in cell B.

Fig. 8b shows the situation following the evaluation
of the last term of h, of y,,. Note that switch S now con-
nects to the right. This means that in the next shift, the
leftmost bit will be lost, and cell B will be loaded with
the new data input bit (bit 2 of word X,x). This new state
of affairs is shown in Fig. 8c. Note that switch S has now
returned to its left position and we have here the evalu-
ation of the first term of h, of y,,.

The time difference between Figs. 8a and 8¢ cor-
responds to one full revolution of the coefficients line,
Hence, these figures represcnt the state of affairs that
would emerge in “strobing” the lines to “froese” the
motion of the coefficients line. The resulting pattern in

73

the X register (excluding cell B) is a 1-bit shift to the
right with a new bit being fed on the left and the oldest
bit being ejected on the right. This is almost identical
with the basic pattern considered in Section II. The only
difference is in the shift direction since the order of com-
puting the h,’s is now the reverse of that of Section II.

We are now in position to consider the overall design
of the machine as shown in Fig. 9. The right part of this
figure is essentially a redrawing of Fig. 8a. Switch S of
that figure is replaced here with an implementation us-
ing three gates controlled by clock sequences C,, C..
Sequence C, steps”the circulating lines, while clock C,
controls the serial radix converter and hence the rate of
feeding new bits.

As we have already seen, counting the TRUE outputs
of gate G over the proper time interval, will yield h,.
This counting as well as the assembly of counts to get
the output word y,, is implemented in a modified up-
down counter. Unlike the standard up-down counter
which accepts inputs into bit 0 only, here we allow
inputs to be delivered to the other bits too. This is per-
missible as long as only one input at a time is activated
and the rate of input is sufficiently low so that rippling
through of carries resulting from the last bit fed has
terminated before a new bit is applied.

The effect of the above modification is that rather
than counting (up or down) by ones only, this counter
can count by any power of 2. This immediately suggests
its application in the construction of the output word
yn according to Eq. (19) which may be rephrased as:

r=0

All we have to do is steer the sequence of bits coming
out of gate G to the proper input terminal and properly
set the (up/down) mode of counting. Specifically, bits
comprising hq should be steered to input 0, counting up,
bits comprising k, should be steered to input 1, counting
down and so on.

As long as the counter does not overflow, this auto-
matically yields the correct y, with negative numbers
appearing in their 2's complement representation.® This

9A D-bit up-down counter will properly represent any integer N
constrained as follows:

—oD-1 < N < 20-1 —1

74

means that the counter output can be fed directly to a
D/A converter to produce the analog output.

Steering the output of gate G to the proper counter
input is controlled by circulating line D. It has J(=7)
cells. One of these is set to one. The rest are set to zero.
Being controlled by clock C,, line D automatically en-
ables bit 7 input when the bits comprising h, are coming
out of gate G. Circulating line D also controls the up-
down mode in an obvious way using two OR gates.

Transfer of the final output to the digital-to-analog
(D/A) converter poses an interesting problem. In prin-
ciple, this could be done in two count cycles, one for
copying out and one for zeroing the counter in prepara-
tion for the next word. However, this would entail inter-
ruption of the flow of input bits during these two cycles.
We prefer to implement the data transfer and initializa-
tion without interrupting this flow. This can be achieved
by the simple expedient of segregating the counter flip-
flops into words L and H as shown in Fig. 9 and trans-
ferring the data from these two words at different
times. Word L is copied out simultaneously with acti-
vating the gate connected to the lowest bit of word
H. Zeroing of word L follows in the next count cycle.
Word H is copied out immediately after its assembly is
complete, that is, simultaneously with the entry (to the
counter) of the first bit of the next filter output word.
Zeroing of word H follows in the next count cycle.

To understand why this scheme works, note that the
counter input gates are activated in a sequence leading
from the low-order bits to the high-order bits. This
means that by the time any gate connected to word H
is activated, the assembly of word L is complete and
it may be copied out. Furthermore, in assigning the par-
titioning into words H, L, we make sure that the lowest
bit of H has an odd weight. This means that when the
first H gate is accessed, the counter is in a down-counting
mode. In this mode a 1— 0 change in flip-flop i does
not affect flip-flop i + 1. Hence, zeroing of word L has
no effect on word H. Similarly, entry of the first two
bits of the new word (with gate 0 activated) affects at
most bit 1 and thus the copying out and zeroing of word
H are not disturbed.

Note that this method would not be applicable in a
system where the higher weights are computed first (as
in Fig. 3). This is the motivation for the input bit se-
quence adopted here. The basic characteristics of this
design, however, are independent of the input sequence
adopted.

JPL TECHNICAL REPORT 32-1526, VOL. IX

We turn now to some operational details. Figure 8
indicates that each filtering task will require a specific
number of cells in the circulating lines [KJ — (J, — 1)]
for the coefficients line and [KJ — (J, — 2)] for the data
line. An important feature of a practical implementation
would therefore be an array of line segments of various
lengths which are to be switched into the circulating
lines by the machine operator. The flexibility and pos-
sibilities of such an arrangement are quite attractive.
Yet, all of this is obtained with a relatively modest in-
vestment in hardware.

The major disadvantage is of course the low speed.
Let T, be the period of clock C, stepping the circulating
lines. In discussing Fig. 8, we saw that a new input bit
is fed with each revolution of the coefficients line. Hence,

Ty={KI—(.— 1)} T, (35)
and (see Eq. 23)

].1: —1
T, = KIzTg{ 1- } (36)

Obviously the penalty for reducing the amount of hard-
ware is quite severe.

We consider now briefly the question of floating point
representation for the filter coefficients. When the range
of coefficients results in a large J,, the effect on the speed
will be quite pronounced (Eq. 36). However, if the up-
down counter is sufficiently large so as not to overflow
under these conditions, the only hardware adjustments
required are the patching together of sufficiently long
circulating lines. Thus, the main argument for floating
point representation is speed increase rather than hard-
ware economy.

We give here only a rough outline of a floating point
implementation based on approximating a;, by aj(—2)*
in which e; is a positive integer and d} is an integer
representable by J, bits in base (—2). We store {a}} in
the data line and {e;} in an extra register used to control
the access to the counter in such a way that a bit belong-
ing to h, and generated by df, is steered to input (r + ¢).
This guarantees the correct result. However, the result-

JPL TECHNICAL REPORT 32-1526, VOL. IX

ing non-monotonic steering raises some difficulties which
will not be discussed here.

VI. Concluding Remarks

We have seen that the counting strategy provides the
basis for a fast machine. How does such a design com-
pare with one based on Eq. (4)? In comparing the two,
coarse estimates of the amount of hardware will suffice.
Using r-bit elementary counters to count N gates in
groups of g, the total number of counters is N/(q — r).10
Hence, the fast design using “full-adders” (=3 r=2)
requires N counters. On the other hand, to attain the same
bit rate with serial multipliers applying Eq. (4), we have
to use K multipliers operating in parallel and K accumu-
lators™ to sum their outputs. Each of these accumulators
must handle at least J, bits and thus consist of at least
Jo “tull-adders” and their associated storage elements.
Hence, with N = KJ,, the K accumulators alone will use
more hardware than the N elementary counters of the
counting design. The K multipliers are therefore extra
hardware to be weighed against the single fast accumu-
lator of the counting design.

There is no question, therefore, that the counting de-
sign is more economical for the fast machine.’> How-
ever, it should be realized that the partitioned counting
approach is also applicable to slow designs, since in-
creasing q will drastically reduce both speed and cost.
Thus, adopting g as the basic design parameter, ma-
chines of widely different characteristics may be built.

All of the designs described here are conceptual
entities. None have been practically implemented. They
all look promising, each with its own particular balance
of performance versus cost. Particularly intriguing in
this context are the possibilities opened by large-scale
integration. It remains to be seen, however, whether
these expectations will actually materialize in a practical
implementation.

W(N/g)(1 + (r/q) + (r/q)2 + '} =N/(q — 1)
1(K/2) (1 L+) =K

2]t is also more precise (1 round-off error insertion versus K such
insertions).

75

76

References

. Pawlak, Z., and Wakulicz, A., “Use of Expansions With a Negative Basis in

the Arithometer of a Digital Computer,” Bull. Acad. Polonaise Sci., Vol. V,
No. 3, pp. 232-236, March 1957.

. Wadel, L. B., “Negative Base Number Systems,” IRE Trans. Electron. Comput.,

Vol. EC-6, p. 123, June 1957.

. Zohar, S., “Negative Radix Conversion,” IEEE Trans. on Comput., Vol. C-19,

No. 3, pp. 222-226, March 1970.

. Zohar, S., “A/D Conversion for Radix (—2)” (submitted to IEEE Trans. on

Comp.).

. Hill, F. J., and Peterson, G. R., “Introduction to Switching Theory and Logical

Design,” pp. 154-158. John Wiley & Sons, Inc., New York, 1968.

JPL TECHNICAL REPORT 32-1526, VOL. IX

ouTPuT

WORD
ACCUMULATOR
A REGISTER FIXED REG!STER HOLDING «
-
i '—%— COUNTER
R
X SHIFT RECISTER L FT REGISTER HOLDING x INPUT WORD BITS

Fig. 1. Preliminary outline of master design

s [T T o] T R R

TITT PIPRE PFPE

s []] oL o] e [l sl el o Lo oL o]

(b) 02 O.' CIO

wwasws [T TS [L]
S o0 o O 0 o
e[| 2] e] o[- -]] =]l o[- [l = 1]x] 7] 7]

[-— —
m=2 xm-l
-
@ %2

Sosws T T L T L) T CEL LT

s (o])]] [e[oo el L e Lo Lo o] e]

Fig. 2. Bit sequences in registers A, X

JPL TECHNICAL REPORT 32-1526, VOL. IX

G

A REGISTER(S) T I—[1|2|3|4| T ﬁ)]l]2|3|4]

ANALOG
| D/A CONVERTER]-—»7],OUTPUT

[Accumutator |

[COuNTRR |

..... R —

X SHIFT REGISTER I|Z|Z|21‘|011|1[Z|Z|2|‘|°|Z|Z|Z|Z|Zl‘|<-— A/D CONVERTER | ANALOG

S —
Xm—l *m
- -

———

x
m+1

Fig. 3. The master design

MULT k 0 1 2 3 4 5 6
n
v 0 1
v-1
q 1 1 1 1
&2 2 1 2 3 2 1
O 1 3 6 7 6 3 1

Fig. 4. Initial stages of partitioned counting forr=3

78

FOR RADIX (~2) & INPUT

MULT nk 1 2 3 4 5 6 7 8 9 10 11 |CNTRS
Ao

;3
7 T

2
5 703
7| 2 2 3 2 1

7432
7 | 3 3 6 7 6 3 1

2
1|4 4 10 16 19 16 10 4 1 .
115 1 5 6 10 8 8 7 2

5
1| 6 1 1 7 5 3 4 3 4 1

1
1|7 11 1 6 4 4 3 4

1
1 | 8 11 1 1 5 5 3 4 1

]
1| e T T 1 1 6 4 4

|
1|10 11 1 1 1 v 5 500

1
1| n R R R T R T Y S

1
1| 12 R TR TS T T (RS W B B

1
1113 11 1 1 1 12

1
1 |4 (R T S T TS TS NS TS B B

TOTAL 602

Fig. 5. Partitioned counting forr = 3; v = 4

JPL TECHNICAL REPORT 32-1526, VOL. IX

k
MULT 2 3 4 5 6 10 11 |CNTRS|
n
7 |o
6
® | 3
5
3%2
P 1
4.2
s 3 3.2
3.3
o2
N 6 4 3
2 .4
2|5 0 10 5 1 3.2
3.2°
3 6 15 20 15 6 1
56
] 7 2135 35 21 7
40
1 8 9 20 24 18 10
28
] 9 4 1 14 14 10
16
1 {10 2 6 9 10 8
12
T n 1 3 5 7 7
8
1|12 1T 1 4 4 5
4
1 |13 11 2 3 4
5
1|4 T 1 2 03
3
1 1s LS N RS B
2
1|1 | S B B
2
1 |7 T o1 1 1
1
1 |18 T o1 1 1
]
1]9 | T T B 2
]
1 |2 | A RS B B (I
TOTAL 2182
Fig. 6. Partitioned counting forr = 2; , = 7

JPL TECHNICAL REPORT 32-1526, VOL. IX

Fig. 7. Time dependence in partitioned counting

79

80

°1 9

annnon

.|
_4_L

Ill|l||2|3||

lzzZI'IOI BE lzll‘|°l |2|
xm-]
O-G—DATAINPUT

0 1 9
A A A
r~ Y
of Jefsfef=f=fof fefs]ef=]=]of1]2]:

/CELL B

T 1-1-

T o[- -T-T2]]o

ZIZIZ

[- -
X X X
m m-1 m-2
S
-0 DATA INPUT
(b)
% B %
r A B s —A-) r —A~ N
L-‘—|O|l[2|3|4|z|z|OIll2|314lzz0‘]]2[3[4
CELL B
e INEEBBnnNENARRNnAREE
X
—_— S —_— m
*m Zm-1)

S

O—a—DATA INPUT

(c)

Fig. 8. Bit sequences in the circulating lines filter

JPL TECHNICAL REPORT 32-1526, VOL.

IX

ANALOG OUTPUT ot

—t
D/A CONVERTER '
|

COEFFICIENTS
LINE

MODIFIED C5 P2
UP-DOWN
COUNTER
¢ ANALOG
A/D INPUT £
C; CONVERTER [*

Fig. 9. The circulating lines filter

JPL TECHNICAL REPORT 32-1526, VOL. IX

81

